Pantnagar Journal of Research

(Formerly International Journal of Basic and Applied Agricultural Research ISSN : 2349-8765)

G.B. Pant University of Agriculture & Technology, Pantnagar
Effect of tillage, fertilizer placement and nitrogen levels on green foliage, brix, sucrose, juice and ethanol production of sweet sorghum (Sorghum bicolor L.) in Mollisols of Uttarakhand
MANOJ KUMAR, MAHENDRA SINGH PAL and KEWALANAND

Status and distribution of soil available micronutrients along a hill slope in Ekpoma, Edo State, Nigeria
AGBOGUN, LUCKY, EDOSOMWAN, N.L. and AGABI, E.J.

Foliar nutrition for higher soybean productivity in north western plain zone of India
AJAY KUMAR, D. K. SHUKLA, AMIT BHATNAGAR and R. K. SHARMA

Soil suitability assessment of a humid tropical soil for pineapple (Ananas comosus) and plantain (musa spp) cultivation in Port Harcourt, Nigeria
PETER, K.D., ORJI, O.A. and ORIAKPO, I.O.

Land suitability evaluation for avocado pear (Persea americana Mill.) and pineapple (Ananas comosus L. Merr) in rain forest zone of Edo State, Nigeria
OKUNSEBOR F. E., UMWENI A. S., ONAIFO W. and OSAGIE D.

Population studies on various coccinellid beetles from different crop ecosystems of Pantnagar, Uttarakhand
M. SREEDHAR, R. P. MAURYA, PARUL DOBHAI and RIYA

Occurrence of leaf feeder Podonita quaduordeculpunctata (Linnaeus, 1767) in Spondias pinnata (L.f.) Kurz at Kamrup district of Assam, India
S. PATHAK and B. DEKA

Morphological characterization of F₁ guava hybrids and varieties
SHIKHA JAIN, RAJESH KUMAR, NARENDRA KUMAR SINGH, VIJAY PRATAP SINGH and SATISH CHAND

Report on severe infestation of root-knot nematode, Meloidogyne incognita on tuberous Vigna vexillata (L.)
ZAKAULLAH KHAN, KULDEEP TRIPATHI, BHARAT H. GAWADE and V. CELIA CHALAM

Selection of exotic germplasm of bread wheat against Puccinia triticina resistance with analysis of Area Under Disease Progress Curve
WAGHAMARE MINAL BHUJANGRAO and DEEPSHIKHRA

Land suitability assessment for okra (Abelmoscus esculentus L.) and fluted pumpkin (Telferia occidentalis, L.) cultivation in Khana Local Government Area of Rivers State, Southern Nigeria
PETER, K.D., UMWENI, A.S. and ORJI, A.O.

A comprehensive study of changed training in SAMETI Uttarakhand mode during Covid-19 pandemic
JYOTI KANWAL, B. D. SINGH, ANURADHA DUITTA and ANIL KUMAR SHARMA
Initiation of Farmers University and Farmers Bank in India
AVINASH SHARMA, CHOWLANI MANPOONG, SANGEETA SHARMA and MEGHA RAGHAVAN

Reformation of ration shop for below poverty line people in India
AVINASH SHARMA, CHOWLANI MANPOONG, SANGEETA SHARMA and MEGHA RAGHAVAN

An empirical analysis of factors influencing agricultural employment intensity of migrant farm households at Almora district of Uttarakhand
BHUMIKA GIRI GOSWAMI and ANIL KUMAR

Consumer attitude and behavior towards purchasing agri food: A case study of tomato crop
TAMANNA JOSHI and ASHUTOSH SINGH

Checklist and conservation status of freshwater finfishes of KoleWetlands a Ramsar Site in Kerala, India
KITTY FRANCIS C. and M. K. SAJEEVAN

Freshwater fish fauna of Peechi-Vazhani Wildlife Sanctuary, Western Ghats of Kerala, India
ELDHO. P. S. and M. K. SAJEEVAN

Study of subclinical mastitis in milk breeds of cattle in Western India
BEENU JAIN, ANUJ TEWARI, BHARAT BHANDERI and MAYURDHWAJ JHALA

Prevalent mutations in the Delta variants of SARS CoV2 circulating in India
BEENU JAIN, ANUJ TEWARI, ALOK KUMAR and PREMA S GODI

An analysis of selective pressure on Delta variants of SARS CoV2 circulating in India
BEENU JAIN, ANUJ TEWARI, ALOK KUMAR, PREMA S GODI and SHRADDHA DWIVEDI

AMR status in Uttarakhand
NAWAL KISHOR SINGH, A. K. UPADIHYAY, T. K. AMBWANI, MAANSI, HIMANI SHARMA, SOURABH SWAMI and AJAY KUMAR

Awareness of the aspects of sun protection among college going girls
BEENU SINGH and MANISHA GAHLOT

Development and evaluation of power weeder for narrow row crops
T. SENTHILKUMAR, N.S.CHANDEL, P.S.TIWARI, SYED IMRAN S. and G. MANIKANDAN

Data prediction for calibration of seed drill using multiple linear regression
SIMRAN TIWARI, PRAMOD MOHNOT and K.B. JHALA

Mapping of ground water potential zone in complex hydrological system of Suyal basin in the Mid-Himalayan Region using Analytic Hierarchical Process
RITESH JOSHI, HJ SHIVA PRASAD, JYOTHI PRASAD, P. S. MAHAR, DEEPAK KUMAR and PANKAJ KUMAR

Water quality assessment of Bageshwar Block Springs using Weighted Arithmetic Water Quality Index (WAWQI)method, Bageshwar District, Uttarakhand, India
MOHD AZAM, JYOTHI PRASAD and H. J. SHIVA PRASAD
Effect of tillage, fertilizer placement and nitrogen levels on green foliage, brix, sucrose, juice and ethanol production of sweet sorghum (Sorghum bicolor L.) in Mollisols of Uttarakhand

MANOJ KUMAR, MAHENDRA SINGH PAL and KEWALANAND

Department of Agronomy, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar-263145 (U.S. Nagar, Uttarakhand)

ABSTRACT: A field experiment was conducted at Instructional Dairy Farm, Nagla, G.B. Pant University of Agriculture and Technology, Pantnagar (India) during Kharif seasons of 2011 and 2012 to study the effect of tillage, fertilizer placement and nitrogen levels on green foliage, brix, sucrose, juice and ethanol production of sweet sorghum (Sorghum bicolor L.) in Mollisols of Uttarakhand. The experimental results revealed that the highest growth attributes, fodder yield, brix%, sugar%, juice and ethanol yield were recorded under subsoiling-cum-differential rate placement of fertilizer. The subsoiling-cum-differential rate placement produced 16.7, 26.7 and 32.7% higher green fodder and 19.2, 33.4 and 42.2% higher dry fodder yield than conventional tillage, subsoiling and subsoiling-cum-deep placement, respectively. Similarly, the brix%, sucrose%, juice and ethanol yield were recorded 21.9, 13.2, 31.2 and 45.0% higher under subsoiling-cum-differential rate placement than conventional tillage, respectively. The nitrogen levels also influenced the quality attributes of sweet sorghum with 8.1, 21.3, 36.4 and 74.0% higher brix%, sucrose%, juice and ethanol yield, respectively under 120 kg N/ha than control, however the green and dry fodder yield increased significantly up to 80 kg N/ha. It is therefore concluded that the fertilizer should be placed at differential depth (20cm and 50 cm) coupled with 80 kg N/ha for higher green foliage as well as brix, sucrose, juice and ethanol production of sweet sorghum in Mollisols of Uttarakhand and may be replicated in similar agro-climatic zones of India.

Key words: Brix, ethanol, juice yield, subsoiling, sucrose

In India, sorghum occupies 4.09 m ha area with production and productivity of about 3.48 mt and 849 kg/ha, respectively (Agricultural Statistics at a Glance, 2020). Presently, the sweet sorghum [Sorghum bicolor (L.) Moench.] is gaining popularity among farming communities mainly because of its fast-growing habit, wide adaptability, tolerance to abiotic stress and good quality of green fodder. Its stalk contains 15-17% fermentable sugars, 47% juice with 7.24% sugar content. Besides, sweet sorghum is a promising source of biofuel like ethanol, jaggery and syrup that can be produced nearly 2000-2500 l/ha⁻¹. It belongs to family Poacea and attains height up to 3.50m. The leaves are broad ~12 cm and long ~25 cm. The stalk contributes 70-80% to biomass. The grains can also be used for making potable ethanol with a recovery rate of 400 l/ t of grain.

Tillage and balanced fertilization are two major aspects of crop production. Heavy tillage with regular use of disc harrow is pulverizing only top 15 to 20 cm soil. The soil below 15-20 cm led to formation of compact/hard layer over long period of cultivation. Kumar (2003) also reported that continuous tillage at top 30cm of soil depth for crop cultivation developed hard pan in the Tarai region of Uttarakhand. The hard pan reduces percolation resulting into water stagnation in rhizosphere that is not only unfavourable to soil flora and fauna but also for proper root growth and development which subsequently reduces nutrient and water uptake of crop plants. Hard compacted layers could be alleviated with the help of deep soil loosening equipment like chisel plough and subsoiler that allow a system of deep cracks and fissures in the subsoil, restoring the soil profile, facilitating the downward movement of water, air and enabling roots to withstand better against short term anaerobic condition (Raper et al., 1998). Subsoiling to a depth of 25-30 cm at 60-90 cm interval improved the yield of autumn planted cane (Chen and Haung, 1972).

Broadcasting of fertilizer results in low fertilizer use efficiency due to various losses (Rababi, 2006). Surface applied nitrogenous fertilizers are more
prone to volatilization i.e., 40 to 50% of applied nitrogen and only 22 to 30% of applied phosphorus and potassium fertilizers are effectively used by the crop and the remaining get either washed away, volatilized, leached to ground water or get fixed with soil (Rowse and Stone, 1980). Broadcasting is common method of fertilizer application just before last tillage or seeding. These fertilizers are localized in the upper layer of soil, so its larger portion is not available to plant roots. Therefore, it is essential to place P and K fertilizers in root zone for higher availability and use efficiency. The vertical placement of fertilizer in different soil layers is more important than horizontal distribution. Thakur and Mandal (2010) reported greater nutrient uptake and higher sugarcane yield under sub-soiling, deep and differential rate placement of fertilizers in the root zone of crop. Besides having such great importance of deep and differential placement of fertilizers, very little research work has been conducted so far on commercial crops including sweet sorghum. Considering above facts, the present study was carried out to study the effect of subsoiling, deep and differential rate placement of fertilizer and N levels on yield and quality of sweet sorghum in Mollisols of Uttarakhand (India).

MATERIALS AND METHODS

The field experiment was conducted during the *Kharif* season of 2011 and 2012 at the Instructional Dairy Farm, Nagla, G.B. Pant University of Agriculture and Technology, Pantnagar, U. S. Nagar (Uttarakhand). The climate of experimental site was humid sub-tropical with hot summers and cold winter. The mean annual rainfall is 1554.1 mm of which 80 to 90 per cent is received from June to October. The total rainfall received during crop period in 2011 and 2012 was 2007.8 mm and 752.8 mm, respectively. The soil of experimental field was well drained and slight silty clay loam in texture with pH 7.21. The available organic carbon was 0.72% and available nitrogen and phosphorus and potassium were 272.3, 29.0, and 236.1 kg/ha, respectively. The experiment consisted of four tillage levels in main plot i.e., conventional tillage (CT), subsoiling (20 cm) followed by (fb) rotavator x1(S), subsoiling-cum-deep placement (40 cm) fb rotavator x1(SDP) and subsoiling-cum-differential rate placement (25 & 50 cm) fb rotavator x1(SDRP) and four N levels in sub plot i.e. control (zero nitrogen), 40, 80 and 120 kg/ha, was laid out in split plot design with four replications. The recommended dose of P (60 kg/ha) and K (40 kg/ha) was deep placed as per the subsoiling treatments, while in conventional tillage it was applied at the time last tillage manually. The nitrogen was applied manually as per treatments in two equal splits i.e. 50% basal and 50% after 30 days after sowing in all treatments. Sweet sorghum variety SPSSV-6 was planted on 27 May 2011 and 4 May 2012. The growth parameters viz., plant height, number of leaves and number of internodes per plant were recorded at 30, 60, 90 DAS and yield attributes were recorded at harvesting i.e., 120 DAS of the crop. The juice quality parameters i.e., brix, sucrose and available sugar were determined by the method described by Spencer and Meade (1955). The experiment data on growth, fodder yield and quality were recorded at harvest of the crop and later were analyzed statistically as per standard method prescribed by Cochran and Cox (1957).

RESULTS AND DISCUSSION

a. Effect of tillage options

i. Growth attributes

Plant population and plant height did not differ significantly with tillage options but the highest values were recorded under subsoiling-cum-differential rate placement fb rotavator which was non-significant with other tillage options. Both plant population and plant height were recorded higher under subsoiling treatment than conventional tillage. Tillage had significant effect on L:S ratio with higher values under subsoiling-cum-differential rate placement fb rotavator that was non-significant with subsoiling-cum-deep placement during both years. It was due to better availability of nutrient and moisture under subsoiling compared with conventional tillage as observed by Thakur and Mandal (2010).
ii. Fodder yield

The green fodder yield and dry fodder yield were affected significantly by tillage during both the years (Table 2). The green fodder yield was recorded significantly higher under subsoiling treatments than conventional tillage. Subsoiling-cum-differential rate placement recorded significantly higher green fodder yield that was on par with subsoiling-cum-deep placement during both the years. Subsoiling, subsoiling-cum-deep placement and subsoiling-cum-differential rate placement gave average 16.7, 26.7 and 32.3% higher average green fodder yield than conventional tillage, respectively, however subsoiling-cum deep placement and subsoiling-cum-differential rate placement yielded 8.6 and 13.4% higher green foliage than subsoiling alone, respectively. Subsoiling-cum-differential rate placement gave only 4.4% higher green fodder yield than subsoiling cum deep placement. Similarly the dry fodder yield was found on an average 2.1, 9.1 and 20.7% more under subsoiling, subsoiling-cum-deep placement and subsoiling-cum-differential rate placement, respectively than conventional tillage. Subsoiling-cum-deep placement and subsoiling-cum-differential rate placement had 6.9 and 18.7% higher dry fodder yield than subsoiling, similarly subsoiling-cum-differential rate placement produced 10.6% more dry fodder yield than subsoiling-cum-deep placement. The higher values under subsoiling treatments were attributed to better growth and development of plants due to higher availability of nutrient and moisture from deeper soil layers (Thakur and Mandal, 2010).

Subsoiling, subsoiling-cum-deep placement and subsoiling-cum-differential rate placement gave 10.8, 15.2 and 21.9% higher average brix% than conventional tillage, respectively, however subsoiling-cum-deep placement and subsoiling-cum-differential rate placement had 4.0 and 10.1% higher values than subsoiling, respectively. The sucrose% was not affected significantly by tillage options during both years, however, the highest values were found under subsoiling-cum-differential rate placement followed by subsoiling-cum-deep placement during both years. The juice yield was recorded significantly highest under subsoiling cum differential rate placement during both years but conventional tillage had significantly equal juice yield to subsoiling in 2011 and subsoiling as well as subsoiling cum deep placement in 2012. On an average the juice yield was 2.2, 6.5 and 31.2% higher under subsoiling, subsoiling-cum-deep placement and subsoiling-cum-differential rate placement, respectively than conventional tillage but the subsoiling had 4.2 and 28.4% lower juice yield than subsoiling cum deep placement and subsoiling cum differential rate placement, respectively. The subsoiling cum differential rate placement yielded 23.2% more juice than subsoiling cum deep placement. The ethanol yield was recorded significantly highest under subsoiling-cum-differential rate placement during both the years (Table 2). Conventional tillage had the lowest ethanol yield which was at par with subsoiling and subsoiling-cum-deep placement during both the years. The conventional tillage had 5.0, 10.0 and 45% lower ethanol yield than subsoiling, subsoiling-cum-deep placement and subsoiling-cum-differential rate placement, respectively but subsoiling-cum-differential rate placement had 31.1% more ethanol yield than subsoiling-cum-deep placement. The higher values of brix%, sugar%, juice yield and ethanol yield were the cumulative effect of better growth and green fodder yield. These findings were close conformity with those of Mandal (2007) and Singh (2008). The interaction was non-significant.

ii. Fodder quality

The brix%, juice yield and ethanol yield were influenced significantly by tillage during both the years (Table 2). The subsoiling-cum-differential rate placement recorded significantly higher brix% that was on par with subsoiling-cum-deep placement in 2011 while it was non-significant with both subsoiling-cum-deep placement and subsoiling in 2012. The conventional tillage had the lowest brix% during both the years.
Table 1: Effect of tillage and nitrogen levels on growth and yield of sweet sorghum

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Plant Population (x 10^3/ha)</th>
<th>Plant height (cm/plant)</th>
<th>L : S ratio</th>
<th>Green fodder yield (q/ha)</th>
<th>Dry fodder yield (q/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Tillage</td>
<td>116</td>
<td>115</td>
<td>298</td>
<td>292</td>
<td>0.31</td>
</tr>
<tr>
<td>Subsoiling (20cm)</td>
<td>120</td>
<td>120</td>
<td>305</td>
<td>298</td>
<td>0.39</td>
</tr>
<tr>
<td>fb Rotavator x1</td>
<td>121</td>
<td>121</td>
<td>308</td>
<td>308</td>
<td>0.40</td>
</tr>
<tr>
<td>Subsoiling-cum-deep placement (40cm)</td>
<td>123</td>
<td>123</td>
<td>315</td>
<td>308</td>
<td>0.48</td>
</tr>
<tr>
<td>fb Rotavator x1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen levels (kg/ha)</td>
<td>0</td>
<td>111</td>
<td>111</td>
<td>300</td>
<td>294</td>
</tr>
<tr>
<td>S. Em ±</td>
<td>03</td>
<td>03</td>
<td>12</td>
<td>10</td>
<td>0.02</td>
</tr>
<tr>
<td>CD (p=0.05)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>40</td>
<td>113</td>
<td>112</td>
<td>301</td>
<td>294</td>
<td>0.34</td>
</tr>
<tr>
<td>S. Em ±</td>
<td>05</td>
<td>05</td>
<td>10</td>
<td>9</td>
<td>0.02</td>
</tr>
<tr>
<td>CD (p=0.05)</td>
<td>13</td>
<td>13</td>
<td>NS</td>
<td>NS</td>
<td>0.05</td>
</tr>
<tr>
<td>80</td>
<td>125</td>
<td>124</td>
<td>309</td>
<td>303</td>
<td>0.43</td>
</tr>
<tr>
<td>S. Em ±</td>
<td>132</td>
<td>132</td>
<td>315</td>
<td>307</td>
<td>0.51</td>
</tr>
<tr>
<td>CD (p=0.05)</td>
<td>13</td>
<td>13</td>
<td>NS</td>
<td>NS</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Table 2: Effect of tillage and fertilizer placement and nitrogen level on brix%, sugar%, juice yield and ethanol yield of Sweet Sorghum

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Brix %</th>
<th>Sucrose %</th>
<th>Juice yield (kl/ha)</th>
<th>Ethanol yield (kl/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Options</td>
<td>2011</td>
<td>2012</td>
<td>Mean</td>
<td>2011</td>
</tr>
<tr>
<td>Subsoiling (20cm)</td>
<td>15.27</td>
<td>14.37</td>
<td>14.82</td>
<td>8.83</td>
</tr>
<tr>
<td>fb Rotavator x1</td>
<td>15.90</td>
<td>14.94</td>
<td>15.42</td>
<td>8.86</td>
</tr>
<tr>
<td>Subsoiling-cum-deep placement (40cm)</td>
<td>16.95</td>
<td>15.67</td>
<td>16.31</td>
<td>9.49</td>
</tr>
<tr>
<td>fb Rotavator x1</td>
<td>1.36</td>
<td>1.53</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>S. Em ±</td>
<td>0.42</td>
<td>0.48</td>
<td>-</td>
<td>0.26</td>
</tr>
<tr>
<td>CD (p=0.05)</td>
<td>1.73</td>
<td>1.74</td>
<td>1.73</td>
<td>1.73</td>
</tr>
<tr>
<td>Nitrogen levels (kg/ha)</td>
<td>14.79</td>
<td>13.91</td>
<td>14.35</td>
<td>8.27</td>
</tr>
<tr>
<td>S. Em ±</td>
<td>0.49</td>
<td>0.58</td>
<td>-</td>
<td>0.31</td>
</tr>
<tr>
<td>CD (p=0.05)</td>
<td>NS</td>
<td>NS</td>
<td>-</td>
<td>0.88</td>
</tr>
</tbody>
</table>
b. Effect of nitrogen levels
i. Growth attributes
Nitrogen had significant role in establishing the plant stand and the highest plant stand was recorded at application of 120 kg N/ha during both the years. The nitrogen level did not have significant effect on plant height but it increased up to 120 kg N/ha with highest values during both the years. The L:S ratio was also increased with increasing level of nitrogen up to 120 kg N/ha, however it increased significantly up to 120 kg N/ha in 2011 and up to 80 kg N/ha in year 2012. Moghimi and Emam (2015) also reported higher L:S ratio at application of 120 kg N/ha mainly because of broader leaves at higher N rates.

ii. Fodder yield
The nitrogen levels had significantly effect on green and dry fodder yield that were increased significantly up to 80 kg N/ha during both the years (Table 1). Two years average values indicated that green fodder yield was increased 9.9 and 19.9% under 80 and 120 kg N/ha, respectively compared to 40 kg N/ha. Similarly 120 kg N/ha gave 9.6% more green fodder than 80 kg N/ha. The dry fodder yield was also increased with increasing nitrogen levels up to 120 kg N/ha, however it increased significantly up to 80 kg N/ha in 2011 and up to 120 kg N/ha in year 2012. The mean values indicated that dry fodder yield was increased 19.2, 33.4 and 42.2% under 40, 80 and 120 kg N/ha, respectively in comparison to 0 kg N/ha, while 80 and 120 kg N/ha gave 11.9 and 19.3% more dry fodder yield than 40 kg N/ha. Moghimi and Emam (2015) also observed similar findings.

iii. Fodder quality
The nitrogen level did not have significant influence on brix%, however the highest and lowest brix values were observed under 120 kg N/ha and control, respectively during both the years (Table 2). The average brix% was 8.5, 5.6 and 1.5% higher under 120 kg N/ha than control, 40 and 80 kg N/ha, respectively. The sucrose% also increased significantly with increasing nitrogen levels with highest values at 120 kg N/ha that was similar to 80 kg N/ha during both years. It was also observed that sucrose% was significantly equal at both control and 40 kg N/ha during both the years. On an average sucrose% was 2.4,10.9 and 21.3% higher under 40, 80 and 120 kg N/ha, respectively than control, while 120 kg N/ha gave 9.3% more sugar% than 80 kg N/ha. The juice yield was also increased with increasing nitrogen levels and significantly highest values were recorded at application of 120 kg N/ha during both the years (Table 2). The juice yield was estimated 7.9, 21.6 and 36.4% higher at 40, 80 and 120 kg N/ha, respectively than control. The juice yield was also recorded 12.6 and 26.3% more at application of 80 and 120 kg N/ha, respectively than 40kg N/ha but the increase in juice yield was 12.1% with increased nitrogen level from 80 to 120 kg N/ha. The ethanol yield was also increased with increasing nitrogen levels with significantly highest values at 120 kg N/ha during both the years. The 120 kg N/ha produced 16.2, 34.0 and 74.0% higher average ethanol yield at application of 80,40 and 0 kg N/ha, respectively. Similarly 40 kg N/ha produced 31.8 and 49.8% lower ethanol yield than 80 and 120 kg N/ha, respectively, while 14.8% higher ethanol yield was recorded at 120 kg N/ha than 80 kg N/ha. The higher values of quality attributes were contributed by better growth and green fodder yield at higher dose of nitrogen application. These findings were in close conformity with those of Uchino et al. (2013) and Olugbemi and Ababyomi (2016). Pal (2020) also reported higher fodder and crude protein yield at application of 120 kg N/ha at Pantnagar conditions as the higher N rates increased the L:S ratio and N content in plants.

CONCLUSION
The experimental results revealed that subsoiling-cumm-differential rate placement followed by rotavator x1 and 120 kg N/ha produced the highest green foliage, dry matter, juice and ethanol yield,
however the green and dry fodder increased significantly up to 80 kg N/ha. It is therefore concluded that the fertilizer should be placed at differential depth (20cm and 50cm) coupled with 80 kg N/ha application manually i.e., 50% basal and 50% at 30 DAS for higher green foliage as well as brix, sucrose, juice and ethanol production of sweet sorghum in Molisols of Uttarakhand and may be replicated in similar agro-climatic zones of India.

REFERENCES


Received: January 31, 2022
Accepted: March 9, 2022