

Print ISSN : 0972-8813
e-ISSN : 2582-2780

[Vol. 23(3) September-December 2025]

Pantnagar Journal of Research

**(Formerly International Journal of Basic and
Applied Agricultural Research ISSN : 2349-8765)**

**G.B. Pant University of Agriculture & Technology
Pantnagar, U.S. Nagar; Uttarakhand, Website : gbpuat.res.in/PJR**

ADVISORY BOARD

Patron

Prof. Manmohan Singh Chauhan, Ph.D., Vice-Chancellor, G.B. Pant University of Agriculture and Technology, Pantnagar, India

Members

Prof. S. K. Verma, Ph.D., Director Research, G.B. Pant University of Agri. & Tech., Pantnagar, India

Prof. Jitendra Kwatra, Ph.D., Director, Extension Education, G.B. Pant University of Agri. & Tech., Pantnagar, India

Prof. S.S. Gupta, Ph.D., Dean, College of Technology, G.B. Pant University of Agri. & Tech., Pantnagar, India

Prof. A.H. Ahmad, Ph.D., Dean, College of Veterinary & Animal Sciences, G.B. Pant University of Agri. & Tech., Pantnagar, India

Prof. Alka Goel, Ph.D., Dean, College of Community Science, G.B. Pant University of Agri. & Tech., Pantnagar, India

Prof. R.S. Jadoun, Ph.D., Dean, College of Agribusiness Management, G.B. Pant University of Agri. & Tech., Pantnagar, India

Prof. Lokesh Varshney, Ph.D., Dean, College of Post Graduate Studies, G.B. Pant University of Agri. & Tech., Pantnagar, India

Prof. Avdhesh Kumar, Ph.D., Dean, College of Fisheries, G.B. Pant University of Agri. & Tech., Pantnagar, India

Prof. Subhash Chandra, Ph.D., Dean, College of Agriculture, G.B. Pant University of Agri. & Tech., Pantnagar, India

Prof. Ramesh Chandra Srivastava, Ph.D., Dean, College of Basic Sciences & Humanities, G.B.P.U.A.T., Pantnagar, India

EDITORIAL BOARD

Members

A.K. Misra, Ph.D., Ex-Chairman, Agricultural Scientists Recruitment Board, Krishi Anusandhan Bhavan I, New Delhi, India & Ex-Vice Chancellor, G.B. Pant University of Agriculture & Technology, Pantnagar

Anand Shukla, Director, Reefberry Foodex Pvt. Ltd., Veraval, Gujarat, India

Anil Kumar, Ph.D., Director, Education, Rani Lakshmi Bai Central Agricultural University, Jhansi, India

Ashok K. Mishra, Ph.D., Kemper and Ethel Marley Foundation Chair, W P Carey Business School, Arizona State University, U.S.A

Binod Kumar Kanaujia, Ph.D., Professor, School of Computational and Integrative Sciences, Jawahar Lal Nehru University, New Delhi, India

D. Ratna Kumari, Ph.D., Associate Dean, College of Community / Home Science, PJTSAU, Hyderabad, India

Deepak Pant, Ph.D., Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Belgium

Desirazu N. Rao, Ph.D., Honorary Professor, Department of Biochemistry, Indian Institute of Science, Bangalore, India

G.K. Garg, Ph.D., Ex-Dean, College of Basic Sciences & Humanities, G.B. Pant University of Agric. & Tech., Pantnagar, India

Humnath Bhandari, Ph.D., IRRI Representative for Bangladesh, Agricultural Economist, Agrifood Policy Platform, Philippines

Indu S Sawant, Ph.D., Principal Scientist, ICAR National Research Centre for Grapes, Pune, India

Kuldeep Singh, Ph.D., Director, ICAR - National Bureau of Plant Genetic Resources, New Delhi, India

Muneshwar Singh, Ph.D., Ex-Project Coordinator AICRP- LTFe, ICAR, Indian Institute of Soil Science, Bhopal, India

Omkar, Ph.D., Professor (Retd.), Department of Zoology, University of Lucknow, India

P.C. Srivastav, Ph.D., Professor (Retd.), Department of Soil Science, G.B. Pant University of Agriculture and Technology, Pantnagar, India

Prashant Srivastava, Ph.D., Soil Contaminant Chemist, CSIRO, Australia

Puneet Srivastava, Ph.D., Director, Water Resources Center, Butler-Cunningham Eminent Scholar, Professor, Biosystems Engineering, Auburn University, United States

R.K. Singh, Ph.D., Ex-Director & Vice Chancellor, ICAR-Indian Veterinary Research Institute, Izatnagar, U.P., India

Ramesh Kanwar, Ph.D., Charles F. Curtiss Distinguished Professor of Water Resources Engineering, Iowa State University, U.S.A.

S.N. Maurya, Ph.D., Professor (Retired), Department of Gynaecology & Obstetrics, G.B. Pant University of Agric. & Tech., Pantnagar, India

Sham S. Goyal, Ph.D., Professor Emeritus, Faculty of Agriculture and Environmental Sciences, University of California, Davis, U.S.A.

Umesh Varshney, Ph.D., Honorary Professor, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India

V.D. Sharma, Ph.D., Dean Life Sciences, SAI Group of Institutions, Dehradun, India

V.K. Singh, Ph.D., Director, ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, India

Vijay P. Singh, Ph.D., Distinguished Professor, Caroline and William N. Lehrer Distinguished Chair in Water Engineering, Department of Biological and Agricultural Engineering, Texas A & M University, U.S.A.

Editor-in-Chief

K.P. Raverkar, Professor, G.B. Pant University of Agriculture and Technology, Pantnagar, India

Assistant Managing Editor

Jyotsna Yadav, Ph.D., Research Editor, Directorate of Research, G.B. Pant University of Agriculture and Technology, Pantnagar, India

Technical Manager

S.D. Samantaray, Ph.D., Professor & Head, Department of Computer Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, India

Development

Dr. S.D. Samantaray, Professor & Head

Brijesh Dumka, Developer & Programmer

PANTNAGAR JOURNAL OF RESEARCH

Vol. 23(3)

September-December, 2025

CONTENTS

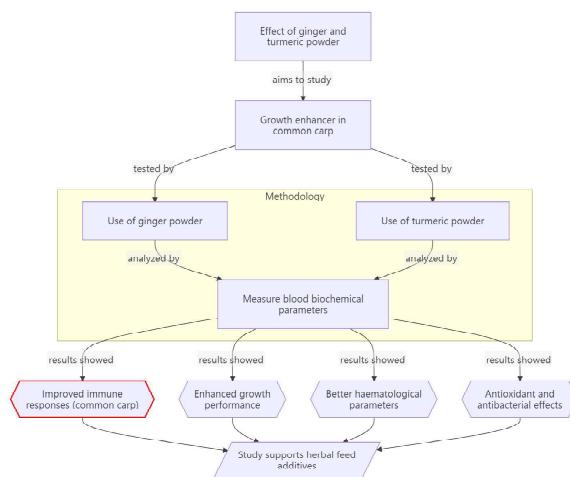
Frogeye leaf spot (<i>Cercospora sojina</i> K. Hara) in soybean: Emerging challenges, resistance genetics and sustainable management strategies SANJEEV KUMAR, LAXMAN SINGH RAJPUT, HEMANT SINGH MAHESHWARI, VANGALA RAJESH, M. RAJENDAR REDDY, PAWAN SAINI, PALAK SOLANKI, JYOTI KAG, MANOJ KUMAR YADAV, JAYWANT KUMAR SINGH and SHIKHA SHARMA	337
Impact of establishment methods and weed management practices on growth and yield attributes of rice (<i>Oryza sativa</i> L.) HIMANSHU, S.K. YADAV, D.K. SINGH and PRATIMA ARYA	350
Integrated weed management practices in wheat (<i>Triticum aestivum</i> L.) under the humid sub-tropical condition of Uttarakhand SHRUTI SINGH, SHIV VENDRA SINGH and RASHMI SHARMA	355
Foliar supplementation of micronutrients on Palash [<i>Butea monosperma</i> (Lam.) Taub.] for enhanced productivity of rangeenilac, <i>Kerria lacca</i> (Kerr, 1782) (Hemiptera: Keridae) PURNIMA KEKTI, P.K. NETAM, DAMINI NISHAD and SOURABH MAHESHWARI	361
Lagged effects of weather variables on <i>Helicoverpa armigera</i> (Hübner) larval population during rabi season RAJNNI DOGRA and MEENA AGNIHOTRI	367
Influence of nutrients on the flowering attributes of the guava cv. Sardar RAKHI GAUTAM, PRATIBHA and A.K. SINGH	377
Sequential functional screening and trait-based association of chickpea rhizobacterial isolates using multiple correspondence analysis DEEPANJALI GUPTA, KIRAN P. RAVERKAR, NAVNEET PAREEK, POONAM GAUTAM, SHRI RAM and AJAY VEER SINGH	384
Evaluation of neutralizing post-vaccination antibody response against Peste des petits ruminants virus in Pantja goat breed of Uttarakhand, India ANUJ TEWARI, AMISHA NETAM, RAJESH KUMAR, SAUMYA JOSHI, S.K. SINGH and R.K. SHARMA	396
Arbuscular Mycorrhizal Fungi (AMF) Root Colonisation and Glomalin Variability Across Bamboo Species Integrating UV-Vis Spectral Characterisation SHAMLI SHARMA, A.K. VERMA and ASHUTOSH DUBEY	402
Comparative pyrolysis of agricultural biomass for bio-oil production and in vitro antifungal analysis of developed bio-oil based formulations VAIBHAV BADONI, ASHUTOSH DUBEY, R. N. PATERIYA and A.K. VERMA	412
Computational exploration of curcumin-p-coumaric acid bioconjugates as potential inhibitors of β-catenin in breast cancer stem cells ANANYA BAHUGUNA and SHIV KUMAR DUBEY	423

Molecular Docking Analysis of Curcumin–Glucose Conjugate as Potential Modulators of Breast Cancer Stemness via β-Catenin Inhibition ROHIT PUJARI, MUMTESH SAXENA and SHIV KUMAR DUBEY	431
Assessment of <i>Schizophyllum commune</i> and <i>Trametes hirsuta</i> as efficient laccase-producing white-rot fungi RUKHSANA BANO, DIKSHA BHARTI and AJAY VEER SINGH	438
Drought stress mitigation and enhancement of maize growth facilitated by the plant growth-promoting bacterium <i>Serratia</i> sp. SRK14 ASHISH KUMAR and AJAY VEER SINGH	444
Effect of adding turmeric, ginger and black pepper on biochemical parameters of <i>Cyprinus carpio</i> KIRTI SHARMA, DAISY RANI1, MADHU SHARMA and TARANG SHAH	454
Design and Development of a Four-Wheel Remotely Controlled Weeding Machine SANDEEP KUMAR SAROJ, JAYANT SINGH, SUMIT KUMAR and SACHIN CHAUDHARY	460
Analyzing farmers perception towards climate change in Nainital district of Uttarakhand ABHISHEK KUMAR and ARPITA SHARMA KANDPAL	466
Study on information seeking behavior of female students of G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand related to menstruation POOJA TAMTA and SUBODH PRASAD	472

Effect of adding turmeric, ginger and black pepper on biochemical parameters of *Cyprinus carpio*

KIRTI SHARMA¹, DAISY RANI¹, MADHU SHARMA^{2*} and TARANG SHAH²

¹Department of Vety. Nutrition, ² Department of Fisheries, DGCN COVAS, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya Palampur (Himachal Pradesh)


*Corresponding author's mail id: madhu.srma@gmail.com

ABSTRACT: The study was conducted with the aim to find out the effect of ginger and turmeric supplementation on the growth performance of common carp (*Cyprinus carpio*) fingerlings. A total of 270 fingerlings were divided into 6 groups including control (C). The group C was fed with basal feed and the treatment groups T5, T5B5, G2, G5, G8 were fed with turmeric powder @ 0.5%, turmeric @ 0.5% + black pepper powder @ 0.5%, ginger powder @ 2%, 5% and 8% respectively. Different biochemical parameters ALT, AST, total protein, albumin, globulin and cholesterol content were estimated after 60 days of feeding. T5B5 group had higher ALT (23.62 ± 4.269) and AST (261 ± 26.845). No significant difference in total protein and globulin contents amongst different treatments was observed, however, the control treatment had significantly ($p < 0.05$) higher albumin (1.008 ± 0.0634) content. The results suggest that dietary supplementation with ginger and turmeric influences biochemical responses in *C. carpio* fingerlings, highlighting their potential role as functional feed additives in aquaculture.

Keywords: Biochemical, commoncarp, fingerlings, ginger, growth, turmeric

Fisheries and aquaculture are one of the world's fastest expanding businesses (Tacon, 2020). Fish is an important source of omega fatty acids. The role of these fatty acids in vision, reproduction, and prenatal and postnatal brain development is well recognized (Lauritzen *et al.*, 2001; Curtis *et al.*, 2004; SanGiovanni and Chew, 2005). Herbs as feed additives play an important role in health and nutrition. Due to rise in antibiotic resistance and its negative impact on human health, there is a growing interest in using herbal feed additives in livestock production. Turmeric (*Curcuma longa L.*) belongs to the Zingiberaceae family and has been used as a spice and medicinal herb in India for thousands of years. It has long been used as a beauty and health enhancer (Rema devi *et al.*, 2007). Turmeric has been shown to have antitoxic, antitumor, anti-inflammatory, hepatoprotective, antimutagenic, antiangiogenic, immunomodulatory, antibacterial, anticancer, and wound healing properties in recent studies (Prasad and Aggarwal, 2011). Ginger (*Zingiber officinale*) belongs to the family Zingiberaceae. The rhizome of this plant used as a spice. Natural antioxidants like as gingerols, shogaols, and zingerone are abundant in ginger (Shakya, 2015). *Zingiber officinale* is a plant that is

used as a flavouring, culinary herb, and medicinal. The bioactive components found in ginger rhizomes have been shown to have immune system functions (Sukumaran *et al.*, 2016), antibacterial qualities (Hasan *et al.*, 2012), and antioxidant activities (Si *et al.*, 2018). Certain fish species' immune and antioxidant systems, haematological and biochemical parameters, growth performance, and

Fig.1: Flow diagram showing the effect of use of ginger and turmeric on fish

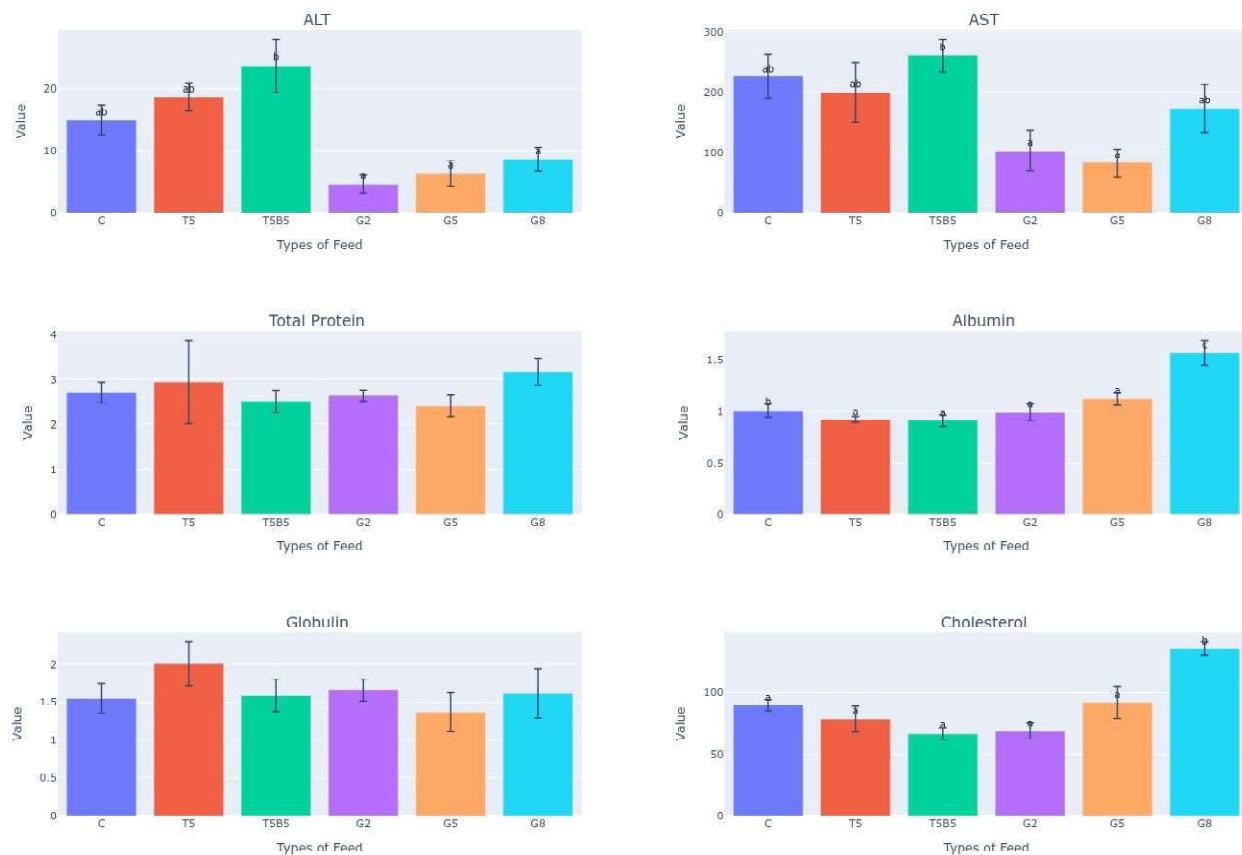
disease resistance have all been shown to benefit from powdered ginger (Ahmadifar *et al.*, 2019, Nya and Austin, 2009, Sukumaran *et al.*, 2016, Talpur *et al.*, 2013). Additionally, the treatment of ginger extract improved body composition, immunological functions, haematology, biochemical parameters, and growth in common carp (*Cyprinus carpio*) (Mohammadi *et al.*, 2020) as well as the immune responses in young beluga sturgeon (*Huso huso*) (Vahedi *et al.*, 2017)

Ginger and turmeric are available in every household of Himachal Pradesh, as they are grown in kitchen gardens and as commercial crops. So, they are available either free of cost or at very low prices. As no research work has been done on the use of ginger and turmeric powder as growth enhancer in common carp under humid sub tropic conditions of H.P., this study was planned with the objective, to study the effect of ginger and turmeric powder, on blood biochemical parameters.

MATERIALS AND METHODS

The research work was carried out in the fisheries farm of the Department of Fisheries, Dr. G.C. Negi, College of Veterinary and Animal Sciences CSK HPKV, Palampur in year 2021. Total 270 fingerlings (40-45g) were procured from Govt Fisheries Farm Gagreat, Una. They were transported in plastic drums. On arriving at the farm, fish were given prophylactic treatment with 0.2 percent $KMnO_4$ for two minutes for removing any dermal infection. After that the fingerling was transferred to tank of length 14 feet 3 inches width 7 feet 3 inches and depth 3 feet 7 inches containing bore-well water. After acclimatization for 14 days they were divided into 6 groups including control (C). The feeds were formulated as suggested by FAO (fao.org). The group C was fed with basal feed and the treatment groups T5, T5B5, G2, G5, G8 were fed with turmeric powder @ 0.5%, turmeric @ 0.5% + black pepper powder @ 0.5 %, ginger powder @ 2%, 5% and 8%, respectively. Water quality parameters such as pH, alkalinity, dissolved oxygen, temperature, and total dissolved solids (TDS) were regularly monitored three times per week throughout the

experimental period. The blood samples were collected to estimate biochemical parameters at the end of two months.


The experimental feeds offered to the fingerlings were isoproteinous and isocaloric. The CP content of the feeds ranged from 30.85 to 33.04 per cent and EE content varied from 4.20 to 5.60 per cent. Average pH, TDS, temperature, alkalinity and dissolved oxygen was 7.1, 52.08 ppm, 220 C and 50 mg/l as $CaCO_3$, respectively. After 2 months of feeding turmeric, black pepper and ginger, blood was collected aseptically from caudal vein of live fish by using 2ml syringe (plate 10). The blood was transferred to the serum collection vial for separation of serum. The serum was collected in eppendorf tube and stored at minus 20 degree Celsius for estimation of following biochemical parameters by using Agape diagnostic kits in Erba Mannheim CHEM 5X Analyzer (plate 11) in the Department of Animal Nutrition, COVAS, Palampur (Himachal Pradesh). Albumin, Globulin, Total protein, ALT(Alanine Aminotransferase), AST (Aspartate Aminotransferase), and Cholesterol were the parameters estimated under biochemical parameters.

RESULTS AND DISCUSSION

The biochemical parameters in fish are the indicator of physiological status and health condition of an organism (Gharaei *et al.*, 2016). The biochemical parameters of fingerlings at the end of the trial have been given in figure 2.

ALT values differed significantly amongst the treatment and T5B5 had significantly ($p<0.05$) higher ALT level in the serum and it did not vary significantly ($p<0.05$) that of C group. AST values of fingerlings of all the treatment groups did not vary significantly from that of C. ALT concentrations of T5B5, G2 and G5 did not vary significantly and T5B5 group had the highest serum AST concentration.

The total protein and globulin concentration of all the treatment groups did not vary significantly. However, there was significant ($p<0.05$) difference

Fig.2: Effect of turmeric, ginger and black pepper on blood biochemical parameters C: Basal feed; T5: Basal feed + turmeric @0.5 per cent; T5B5: Basal feed + turmeric @0.5 per cent + black pepper @ 0.5 per cent; G2: Basal feed + ginger @ 2 per cent; G5: Basal feed + ginger @ 5 per cent; G8: Basal feed + ginger @ 8 per cent; Figures bearing different superscripts within a row are statistically different ($p<0.05$)

in albumin concentration amongst the treatments. Serum concentration of all the treatments (including control) except G8 were statistically similar and G8 had significantly ($p<0.05$) higher serum albumin concentration compared to rest of the treatments. No effect of turmeric, turmeric + black pepper and ginger supplementation on total protein and globulin was observed. The supplementation of turmeric, ginger and black pepper resulted in significantly ($p<0.05$) higher cholesterol concentration in fingerlings of G8 group whereas all the rest of treatments had similar serum concentration of cholesterol.

Ashrey *et al.* (2021) reported no effect of curcumin supplementation on ALT, AST and total cholesterol. The oxidative stress on an organism is increased with malnutrition and imbalance/ poor quality of feed. This stress causes impaired liver function and lipid

metabolism (Dawood and Koshio 2020) resulting in altered AST, ALT and ALP values. Ajeel and Alfaragi (2013) reported a significant decrease in AST and ALT compared to the control group upon supplementation garlic 10 gm per kg and ginger 2.5 gm per kg + garlic 7.5 gm per kg. The active components in herbs/spices result in stabilization of cell membrane and provide protection to the liver cells from damage of toxic products and free radical (Ajeel and Alfaragi, 2013) which is usually reflected by lowering in liver enzyme. Kanani *et al.* (2014) reported decreased AST and no effect on ALT in ginger fed fish. Shalabay *et al.* (2006) also reported decrease in AST level in Nile tilapia on garlic supplementation. Conflicting reports on liver enzyme level might be due the differences in fish species size water quality parameters, feeding and rearing conditions etc.

The higher serum proteins concentration is associated with the innate immune response of the organism (Wiegertjes *et al.*, 1996). Ashry *et al.* (2021) reported curcumin supplementation has significant increase in total protein. Kanani *et al.* (2014) also reported increase in Total protein content on supplementation 1 per cent ginger in *Huso huso*. They attributed higher total plasma protein level to the increased protein synthesis in liver tissue upon feeding ginger powder. Kanani *et al.* (2014) also reported higher albumin and globulin content in ginger fed fish. Globulins are the source of most of immunological active protein in the blood (Jha *et al.*, 2007).

Najem *et al.* (2020) reported that total protein, albumin did not show any significant difference in treatment groups as compared to control when fed with ginger @ 1, 1.5, 2 per cent whereas globulin showed significant increase when ginger was fed @ 2 per cent in diet. Cholesterol significantly decreases when fed @ 2%. Similarly, Dugenci *et al.* (2003) also reported elevated serum protein level in ginger fed Nile tilapia. Ajeel and Alfaragi (2013) reported significant increase in total protein, albumin and globulin upon supplementation of garlic @ 10 gm per kg and ginger 2.5 gm per kg + 7.5 gm per kg garlic in feed of common carp. Arulvasu *et al.* (2013) also reported that ginger supplementation increased total serum protein in *Catla catla*.

CONCLUSION

Overall, the results indicate that dietary supplementation of turmeric (0.5%) and ginger modulates biochemical responses in *C. carpio* fingerlings, thereby indicating its potential to improve the physiological performance and nutritional quality of the fish. Therefore, turmeric and ginger may be considered effective functional feed additives for improving fish health and metabolic status in aquaculture.

ACKNOWLEDGMENTS

The authors are thankful to Dean College of Veterinary and Animal Sciences CSKHPKV, for providing laboratory facility.

REFERENCES

Ahmadifar E., Sheikhzadeh N., Roshanaei K., Dargahi N. and Faggio C. (2019). Can dietary ginger (*Zingiber officinale*) alter biochemical and immunological parameters and gene expression related to growth, immunity and antioxidant system in zebrafish (*Danio rerio*)? *Aquaculture*, 507: 341-348, 10.1016/j.aqua-culture.2019.04.049

Ajeel S.G. and Al-Faragi J.K. (2013). Effect of ginger (*Zingiber officinale*) and garlic (*Allium sativum*) to enhance health of common carp *Cyprinus carpio* L. *Iraqi Journal of Veterinary Medicine*, 37: 59-62.

Arulvasu C., Mani K.A., Chandhirasekar D., Prabhu D. and Sivagnanam S.H. (2013). Effect of dietary administration of *Zingiber officinale* on growth, survival and immune response of Indian major carp, Catla catla (Ham.). *International Journal of Pharmacy and Pharmaceutical Sciences*, 5: 108-115.

Ashry A.M., Hassan A.M., Habiba M.M., El-Zayat A., El-Sharnouby M.E., Sewilam H. and Dawood M.A.O. (2021). The Impact of Dietary Curcumin on the Growth Performance, Intestinal Antibacterial Capacity, and Haemato-Biochemical Parameters of Gilthead Seabream (*Sparus aurata*). *Animals*, 11: 1779.

Curtis D.J. (2004). Diet and nutrition in wild mongoose lemurs (*Eulemur mongoz*) and their implications for the evolution of female dominance and small group size in lemurs. *American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists*, 124: 234-247.

Dawood MA and Koshio S. (2020). Application of fermentation strategy in aquafeed for sustainable aquaculture. *Reviews in Aquaculture*, 12: 987-1002.

Dugenci, S.K. Arda, N. CandanA. (2003). Some medicinal plants as immunostimulant for fish. *Journal of Ethnopharmacology*, 88: 99-106.

Gharaei A., Rayeni M.F., Ghaffari M., Akrami R. and Ahmadifar E. (2016). Influence of dietary prebiotic mixture (α -mune) on growth performance, haematology and innate immunity of Beluga sturgeon (*Huso huso*) juvenile. *International Journal of Aquatic Biology*, 4: 277-284.

Hasan H. A., Raauf A.M.R., Razik B. and Hassan B.R. (2012). Chemical composition and antimicrobial activity of the crude extracts isolated from *Zingiber officinale* by different solvents. *Pharmaceutica Analytica Acta*, 3 (9): 1-5

Jha A.K., Pal A.K., Sahu N.P., Kumar S. and Mukherjee S.C. (2007). Haemato-immunological responses to dietary yeast RNA, ω -3 fatty acid and β -carotene in Catla catla juveniles. *Fish & Shellfish Immunology*, 23: 917-927.

Kanani H.G., Nobahar Z., Kakoolaki S. and Jafarian H. (2014). Effect of ginger-and garlic-supplemented diet on growth performance, some hematological parameters and immune responses in juvenile *Huso huso*. *Fish Physiology and Biochemistry*, 40: 481-490.

Lauritzen L.A., Hansen H.S., Jørgensen M.H. and Michaelsen K.F. (2001). The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. *Progress in Lipid Research*, 40: 1-94

Mohammadi G., Rashidian G., Hoseinifar S.H., Naserabad S.S. and Doan H.V. (2020). Ginger (*Zingiber officinale*) extract affects growth performance, body composition, haematology, serum and mucosal immune parameters in common carp (*Cyprinus carpio*). *Fish Shellfish and Immunology*, 99: 267-273, 10.1016/j.fsi.2020.01.032

Najem E.S., Hamad Al-Shammari S.M. and Kane A.M. (2020). Evaluation the Effects of *Zingiber officinale* L. as a feed Additive on Growth and Some Serum Biochemical Profiles of *Cyprinus carpio* L. *Indian Journal of Forensic Medicine & Toxicology*, 14(2).

Nya E. J. Austin B. (2009). Use of dietary ginger, *Zingiber officinale* Roscoe, as an immunostimulant to control *Aeromonas hydrophila* infections in rainbow trout, *Oncorhynchus mykiss* (Walbaum). *Journal of Fish Diseases*, 32(11):971-7. doi: 10.1111/j.1365-2761.2009.01101.x. PMID: 19843197.

Prasad S. and Aggarwal B.B. (2011). Turmeric, the golden spice. *Herbal Medicine: Biomolecular and Clinical Aspects*. 2nd edition

Remadevi R., Surendran E. and Kimura T. (2007). Turmeric in traditional medicine. *Turmeric: the genus Curcuma*, 409-436

SanGiovanni J.P. and Chew E.Y. (2005). The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. *Progress in Retinal and Eye Research*, 24: 87-138.

Shakya S.R. (2015). Medicinal uses of ginger (*Zingiber officinale* Roscoe) improves growth and enhances immunity in aquaculture. *Int. J. Chem. Stud*, 3: 83-7

Shalaby A.M., Khattab Y.A. and Abdel Rahman A. M. (2006). Effects of Garlic (*Allium sativum*) and chloramphenicol on growth performance, physiological parameters and survival of Nile tilapia (*Oreochromis niloticus*). *Journal of Venomous Animals and Toxins including Tropical Diseases*, 12: 172-201

Si W., Chen Y.P., Zhang J., Chen Z.Y. and Chung H.Y. (2018). Antioxidant activities of ginger extract and its constituents toward lipids. *Food and Chemical Toxicology*, 239: 1117-1125

Sukumaran V., Park, S.C. and Giri S.S. (2016). Role of dietary ginger *Zingiber officinale* in improving growth performances and immune functions of *Labeo rohita* fingerlings. *Fish & Shellfish Immunology*, 57: 362-370

Tacon A.G. (2020). Trends in global aquaculture and aquafeed production: 2000–2017. *Reviews in Fisheries Science & Aquaculture*, 28: 43-56

Talpur A.D., Ikhwanuddin M. and Ambok Bolong A.M. (2013). Nutritional effects of ginger (*Zingiber officinale* Roscoe) on immune response of Asian sea bass, *Lates calcarifer* (Bloch) and disease resistance against *Vibrio harveyi*. *Aquaculture*, 400401: 4652, 10.1016/j.aquaculture.2013.02.043

Vahedi A., Hasanpour M., Akrami R. and Chitsaz H. (2017). Effect of dietary supplementation with ginger (*Zingiber officinale*) extract on growth, biochemical and hemato-

immunological parameters in juvenile beluga (*Huso huso*). *Sustainable Aquaculture and Health Management Journal*, 3 (1): 26-46.

Wiegertjes G.F., Stet R.M., Parmentier H.K. and van Muiswinkel W.B. (1996). Immunogenetics of disease resistance in fish: a comparative approach. *Developmental & Comparative Immunology*, 20: 365-381.

Received: November 21, 2025

Accepted: December 12, 2025