ADVISORYBOARD

Patron
Dr. Tej Pratap, Vice-Chancellor, G.B. Pant University of Agriculture and Technology, Pantnagar, India

Members
Dr. A.S. Nain, Ph.D., Director Research, G.B. Pant University of Agri. & Tech., Pantnagar, India
Dr. A.K. Sharma, Ph.D., Director, Extension Education, G.B. Pant University of Agri. & Tech., Pantnagar, India
Dr. S.K. Kashyap, Ph.D., Dean, College of Agriculture, G.B. Pant University of Agri. & Tech., Pantnagar, India
Dr. N.S. Jadon, Ph.D., Dean, College of Veterinary & Animal Sciences, G.B. Pant University of Agri. & Tech., Pantnagar, India
Dr. K.P. Raverkar, Ph.D., Dean, College of Post Graduate Studies, G.B. Pant University of Agri. & Tech., Pantnagar, India
Dr. Sandeep Arora, Ph.D., Dean, College of Basic Sciences & Humanities, G.B. Pant University of Agri. & Tech., Pantnagar, India
Dr. Alaknanda Ashok, Ph.D., Dean, College of Agriculture, G.B. Pant University of Agri. & Tech., Pantnagar, India
Dr. Alka Goel, Ph.D., Dean, College of Home Science, G.B. Pant University of Agri. & Tech., Pantnagar, India
Dr. R.S. Chauhan, Ph.D., Dean, College of Fisheries, G.B. Pant University of Agri. & Tech., Pantnagar, India
Dr. R.S. Jadaun, Ph.D., Dean, College of Agribusiness Management, G.B. Pant University of Agri. & Tech., Pantnagar, India

EDITORIALBOARD

Members
Prof. A.K. Misra, Ph.D., Chairman, Agricultural Scientists Recruitment Board, Krishi Anusandhan Bhavan I, New Delhi, India
Dr. Anand Shukla, Director, Reeberry Foodex Pvt. Ltd., Veraval, Gujarat, India
Dr. Anil Kumar, Ph.D., Director, Education, Rani Lakshmi Bai Central Agricultural University, Jhansi, India
Dr. Ashok K. Mishra, Ph.D., Kemper and Ethel Marley Foundation Chair, WP Carey Business School, Arizona State University, U.S.A
Dr. B.B. Singh, Ph.D., Visiting Professor and Senior Fellow, Dept. of Soil and Crop Sciences and Borlaug Institute for International Agriculture, Texas A&M University, U.S.A.
Prof. Binod Kumar Kanaujia, Ph.D., Professor, School of Computational and Integrative Sciences, Jawahar Lal Nehru University, New Delhi, India
Dr. D. Ratna Kumari, Ph.D., Associate Dean, College of Community / Home Science, PJTSAU, Hyderabad, India
Dr. Deepak Pant, Ph.D., Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Belgium
Dr. Desirazu N. Rao, Ph.D., Professor, Department of Biochemistry, Indian Institute of Science, Bangalore, India
Dr. G.K. Garg, Ph.D., Dean (Retired), College of Basic Sciences & Humanities, G.B. Pant University of Agri. & Tech., Pantnagar, India
Dr. Humnath Bhandari, Ph.D., IRRI Representative for Bangladesh, Agricultural Economist, Agrifood Policy Platform, Philippines
Dr. Indu S Sawant, Ph.D., Director, ICAR - National Research Centre for Grapes, Pune, India
Dr. Kuldeep Singh, Ph.D., Director, ICAR - National Bureau of Plant Genetic Resources, New Delhi, India
Dr. M.P. Pandey, Ph.D., Ex. Vice Chancellor, BAU, Ranchi & IGKV, Raipur and Director General, IAT, Allahabad, India
Dr. Martin Mortimer, Ph.D., Professor, The Centre of Excellence for Sustainable Food Systems, University of Liverpool, United Kingdom
Dr. Muneshwar Singh, Ph.D., Project Coordinator AICRP- LTFE, ICAR - Indian Institute of Soil Science, Bhopal, India
Prof. Omkar, Ph.D., Professor, Department of Zoology, University of Lucknow, India
Dr. P.C. Srivastava, Ph.D., Professor, Department of Soil Science, G.B. Pant University of Agriculture and Technology, Pantnagar, India
Dr. Prashant Srivastava, Ph.D., Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of South Australia, Australia
Dr. Puneet Srivastava, Ph.D., Director, Water Resources Center, Butler-Cunningham Eminent Scholar, Professor, Biosystems Engineering, Auburn University, U.S.A.
Dr. R.C. Chaudhary, Ph.D., Chairman, Participatory Rural Development Foundation, Gorakhpur, India
Dr. R.K. Singh, Ph.D., Director & Vice Chancellor, ICAR-Indian Veterinary Research Institute, Izatnagar, U.P., India
Prof. Ramesh Kanwar, Ph.D., Charles F. Curtiss Distinguished Professor of Water Resources Engineering, Iowa State University, U.S.A.
Dr. S.N. Maurya, Ph.D., Professor (Retired), Department of Gynecology & Obstetrics, G.B. Pant University of Agric. & Tech., Pantnagar, India
Dr. Sham S. Goyal, Ph.D., Professor (Retired), Faculty of Agriculture and Environmental Sciences, University of California, Davis, U.S.A.
Prof. Umesh Varshney, Ph.D., Professor, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
Prof. V.D. Sharma, Ph.D., Dean Academics, SAI Group of Institutions, Dehradun, India
Dr. V.K. Singh, Ph.D., Head, Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, India
Dr. Vijay P. Singh, Ph.D., Distinguished Professor, Caroline and William N. Lehrer Distinguished Chair in Water Engineering, Department of Biological Agricultural Engineering, Texas A&M University, U.S.A.
Dr. Vinay Mehrotra, Ph.D., President, Vinlax Canada Inc., Canada

Editor-in-Chief
Dr. Manoranjan Dutta, Head Crop Improvement Division (Retd.), National Bureau of Plant Genetic Resources, New Delhi, India

Managing Editor
Dr. S.N. Tiwari, Ph.D., Professor, Department of Entomology, G.B. Pant University of Agriculture and Technology, Pantnagar, India

Assistant Managing Editor
Dr. Jyotirmaya Yadav, Ph.D., Research Editor, Directorate of Research, G.B. Pant University of Agriculture and Technology, Pantnagar, India

Technical Manager
Dr. S.D. Samantray, Ph.D., Professor, Department of Computer Science and Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, India
CONTENTS

1. Identification of new source of white rust resistance in Indian mustard \(B. \text{juncea} \) (L.) Czern \& Coss from germplasm collected from Uttarakhand hills
 Usha Pant, Ram Bhaajan, Purnima Kandpal, Neha Dahiya, A. K. Singh and Sameer Chaturvedi

2. Genetic variability studies for yield and its related traits in rice \(Oryza \text{sativa} \) genotypes
 Aparna, Indra Deo, Charupriya Chauhan and Deepayan Roy

3. Net photosynthesis and spectral reflectance over rice crop under different nitrogen treatments in semi-arid region of India
 Shweta Pokhriyal and N.R. Patel

4. Management of crop with livestock and allied enterprises for sustainable livelihood of small farmers in north Indian plains

5. Effect of mulches and irrigation schedules on productivity and water use efficiency of sunflower \(Helianthus \text{annuus} \) in Mollisols of India
 Rakesh Dawar and Mahendra Singh Pal

6. Growth and yield response of black gram \(Vigna \text{mungo} \) to foliar nutrition and growth regulator application
 Sushil, Omvati Verma, Subsha Chandra, J.P. Jaiswal and V.C. Dhyani

7. Effect of FYM and nitrogen levels on growth, dry matter accumulation, yield and nutrient uptake of brahmi \(Bacopa \text{monnieri} \)
 Vineeta Rathore

8. Studies on flowering behaviour of double type varieties of African marigold \(Tagetes \text{erecta} \) in different seasons under Uttarakhand conditions
 Anubhaviya Bisht, V.K. Rao and D. C. Dimri

9. Effect of pyrolysis temperatures on major nutrients and some physical and chemical properties in biochar produced from different biosources
 Abhishek Saxena, P.C. Srivastava, Anand Pathak and S.P. Pachauri

10. Status of some extractable macro- and micro-nutrients in soils of Tehri Garhwal district of Uttarakhand
 Aashish Prajapati, S. P. Pachauri, P.C. Srivastava, Anand Pathak and Deepa Rawat

11. Effect of Stabilized Magnetite Nano Fertilizer on growth, yield and nutrient contents of broccoli \(Brassica \text{oleracea var. italic} \) cv. F1 HYB NS-50
 Rakesh Jat, Soheb Shekh, Jinali Shah, Pujan Vaishnav and P. O. Suresh

12. Effect of sixteen essential oils on the progeny production of \textit{Sitophilus oryzae} (Linnaeus)
 Nidhi Tevar and S. N. Tiwari

13. Bio-efficacy of some essential oils as fumigant against Lesser grain borer, \textit{Rhyzopertha dominica} (Fab.)
 Nidhi Tevari and S. N. Tiwari

- Page 112
- Page 119
- Page 125
- Page 131
- Page 137
- Page 144
- Page 151
- Page 159
- Page 166
- Page 171
- Page 180
- Page 187
- Page 195
Seasonal changes in yield, composition and fumigant action of essential oil of *Murraya koenigii* L. against *Rhyzopertha dominica* (F.) and *Sitophilus oryzae* (L.)
GEETANJLY and S.N.TIWARI

Natural enemies of papaya mealybug, *Paracoccus marginatus* Williams and Granara de Willink in Tarai region of Uttarakhand
RADHA KORANGA and R. P. MAURYA

Combined effect of entomopathogens with biorationals against Lepidopteran insect pests of greengram
KULDEEP KUMAR DUDPURI and J. P. PURWAR

Seasonal abundance of predatory coccinellid beetles in different cropping ecosystems at Pantnagar
R. NAVEENA MANIMALA, MEENA AGNIHOTRI and J.M. SAM RAJ

Diversity of insect pollinators and pollination mechanism in sponge gourd, *Luffa cylindrica* (L.) Roem
MOHAMMAD SARFRAZ KHAN and GAURAVA KUMAR

Effect of host genotypes on the severity of sorghum anthracnose
MEENAKSHI RANA, YOGENDRA SINGH, DIVAKAR and SEWETA SRIVASTAVA

A review on sugarcane smut caused by *Sporisoriums citamineum* and its eco-friendly management
SHAILBALA SHARMA

Significance of Nutritional Mapping in today’s scenario
DUTTA A., JOSHI D., BOSE S. and ACHARY A R.

Development and shelf-life evaluation of fiber enriched traditional Indian Parotta
PAL MURUGAN MUTHAIAH, PRIYANKA, SANTOSH PAL, GOVINDA RAJ T, KHAN M.A., SHARMA G.K. and SEMWAL A.D.

To study the effect of maltodextrin, tricalcium phosphate, glycerol monostearate and drying temperature on vacuum foam mat quality parameters of papaya powder
SACHIN KUMAR, ANIL KUMAR, P.K.OMRE, JITENDRA CHANDOLA and IFTIKHAR ALAM

Design and development of self-propelled onion (*Allium cepa* L.) digger
VISHAL PATEL, DHARMENDRA KUMAR and ANSHU SAXENA

Lead toxicity in cattle: A case report
NEERAJ KUMAR, MANISH KUMAR VERMA, MUNISH BATRA and ANKIT NAGAR

Bovine tropical theileriosis in cross-bred calf: A case report
NEERAJ KUMAR, STUTI VATSYA, MUNISH BATRA, MANISH KUMAR VERMA and JIYA VERMA

Occupational hazards among veterinarians
PARMAR, T., UPADHYAY A. K. and MAANSI

Epidemiological factors of COVID-19
POOJA SINGH, MAANSI, N. K. SINGH, and A. K.UPADHYAY

Effect of probiotics and growth stimulants on haematological status in Murrah buffalo
SAMEER PANDEY, RAJ KUMAR, RAJBIR SINGH, DEEPAK KUMAR, KARTIK TOMAR and SHIWANSHU TIWARI

Effect of supplementation of black cumin (*Nigella sativa*) on growth performance and haematological parameters of commercial broilers
NAMITA NAULA, C.B. SINGH, SHIWANSHU TIWARI and DEVESH SINGH
Occupational hazards among veterinarians

PARMAR, T., UPADHYAY A. K. and MAANSI

Department of Veterinary Public Health and Epidemiology, College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar-263145 (U.S. Nagar, Uttarakhand)

ABSTRACT: Veterinary professionals are always exposed to occupational risks like traumatic injuries, zoonotic diseases and mental health hazards. Physical injuries reported were bite (31.8%), scratch (65.1%), kick (62.8%), horn wound (14%), needle prick (89.2%), fracture (3.8%) and injuries due to falling/ lifting animals/ moving heavy equipment (61.3%). Majority of veterinarians experienced some form of allergy. Incidence of skin irritation was highest among 50.2% veterinarians. Ringworm (13.5%) and fungal infection (26.5%) were most common zoonotic infection. Low level stress was reported in 45% of participants, 34% had moderate and 21% felt high level of psychological stress. The proportion of participants using protective equipment includes 60% gloves, 1.1% goggles, and 39.8% apron. The study showed that 171(43.6%), 122 (31.1%), 67 (17.1%), 32 (8.2%) veterinarians followed deworming at 6 month, 1 year, 2 year and more than 2 year intervals respectively. The awareness levels concerning occupational hazards among the veterinary health professionals was near optimal but the need was felt to implement efforts aimed at addressing deterrence of occupational hazards.

Key words: Epidemiology, hazard, veterinarian, zoonotic
and percentage frequencies were calculated on 40 questions based on the demographics and occupational hazards and preventive measures taken. Occupational hazards were further categorized into physical hazards, radiation hazard, chemical hazards, zoonotic hazards and psychological hazards. Details of all these occupational hazards and preventive measures applied by veterinarians were categorized into different tables to present and evaluate information concerning different kind of attributes.

RESULTS AND DISCUSSION

Out of total 1000 questionnaire only 400 responses were achieved. Out of 400 responses, 8 were excluded from further analysis on account of incompletely filled response. Field veterinarians were prompt (61.8%) compared to veterinarians in academics (38.2%).

Physical injuries

Various studies on veterinary profession have revealed that veterinary work is physically challenging and poses a raised risk of severe injuries or trauma. Majority of veterinarians reported some sort of injuries within last five year. Out of total 392 respondents, 20 (5.1%) reported no injury, 186 (47.5%) respondents had 1-5 injuries, 126 (32.1%) encountered 5-10 injuries and 60(15.3%) veterinarians had more than 10 injuries during last 5 years. From the analysis of survey, we can affirm that physical injuries remain one of the main risk factor for veterinarians as also observed by Bonini et al. (2016). Present study explain needle prick injuries are frequent in the veterinary (Table 1), this is found to be in alignment with the work of Fowler et al. (2016). Needle stick injuries may involve the risk of self-injecting drugs and other harmful substances and the primary method to diminish needle stick injuries is to keep away from recapping needles or at the very least use ‘one handed scooping technique’ to recap (Weese and Jack, 2008). Apart from needle prick injury, veterinarians were also injured by bite, scratch, kick, horn wound, fracture and injuries due to falling while lifting or restraining animals (Table 1). The ergonomic injuries have been acknowledged as physical hazards with recurring task and manual handling burden through lifting and restraining animals contributing too many physical problems among veterinarians (Moore et al., 1993).

Radiation hazards

The dose of radiation depends on the numbers of x-ray taken by the person, type of machine and setting, involvement of veterinarian in physical restraining of animals and protective devices used by the person (Shirangi et al., 2007). The low proportion of veterinarians (19.1%), taking x-ray is not consistent with an Australian study where 79% practicing veterinarians used radiography as diagnostic tool (Shirangi et al., 2007). The reason for this variance may be unavailability of x-ray machines in government veterinary hospitals in India.

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total no. of veterinarians taking x-ray</td>
<td>75</td>
<td>19.1% (75/392)</td>
</tr>
<tr>
<td>No. of veterinarians using lead gloves</td>
<td>46</td>
<td>61.3% (46/75)</td>
</tr>
<tr>
<td>No. of veterinarians using lead apron</td>
<td>65</td>
<td>86.7% (65/75)</td>
</tr>
<tr>
<td>No. of veterinarians using lead sleeves</td>
<td>7</td>
<td>9.3% (7/75)</td>
</tr>
<tr>
<td>No. of veterinarians using protective glasses</td>
<td>25</td>
<td>33.3% (25/75)</td>
</tr>
<tr>
<td>No. of veterinarians using personal monitor</td>
<td>38</td>
<td>50.6% (38/75)</td>
</tr>
</tbody>
</table>

Table 1: Details of different kinds of physical injuries among veterinarians

<table>
<thead>
<tr>
<th>S.N</th>
<th>Type of Injury</th>
<th>Veterinarian injured (Number-392)</th>
<th>Veterinarian took treatment for injuries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Frequency</td>
<td>Percentage</td>
</tr>
<tr>
<td>1</td>
<td>Animal bite</td>
<td>125</td>
<td>31.8%</td>
</tr>
<tr>
<td>2</td>
<td>Scratch</td>
<td>255</td>
<td>65.1%</td>
</tr>
<tr>
<td>3</td>
<td>Kick</td>
<td>246</td>
<td>62.8%</td>
</tr>
<tr>
<td>4</td>
<td>Horn wound</td>
<td>55</td>
<td>14%</td>
</tr>
<tr>
<td>5</td>
<td>Fracture</td>
<td>15</td>
<td>3.8%</td>
</tr>
<tr>
<td>6</td>
<td>Needle prick</td>
<td>350</td>
<td>89.2%</td>
</tr>
<tr>
<td>7</td>
<td>Injuries due to falling while lifting or restraining animals</td>
<td>241</td>
<td>61.3%</td>
</tr>
</tbody>
</table>

Table 3: Veterinarians contracted various zoonotic diseases while dealing animals

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ringworm</td>
<td>53</td>
<td>13.5%</td>
</tr>
<tr>
<td>Other fungal infections</td>
<td>104</td>
<td>26.5%</td>
</tr>
<tr>
<td>Scabies</td>
<td>20</td>
<td>5%</td>
</tr>
<tr>
<td>Toxoplasmosis</td>
<td>2</td>
<td>0.5%</td>
</tr>
<tr>
<td>Other parasitic infections</td>
<td>37</td>
<td>9.5%</td>
</tr>
<tr>
<td>Amoebiosis</td>
<td>20</td>
<td>5%</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>2</td>
<td>0.5%</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Staphylococciosis</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Salmonellosis</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Influenza</td>
<td>78</td>
<td>19.8%</td>
</tr>
</tbody>
</table>
especially Uttarakhand. The results regarding using protective gears by veterinarians while performing x-rays revealed that 86.7% were using lead apron but other protective gears like lead gloves, personal monitor, protective glasses and lead sleeves were not common (Table 2), this proportion is nearly similar to those reported by Jacobson and Farowe (1964).

Chemical Hazards

Veterinarians handle drugs, disinfectants, antiseptics, pesticides etc. (Shirangi et al., 2007). Responses on chemical hazard linked sickness revealed that 187 (47.7%) veterinarians were using antineoplastic agents to treat animals and out of 187 individuals, 4 (2.1%) veterinarian accidentally injected drugs to themselves. None reported any adverse effect due to self-injection. Adverse effects of disinfectant were reported by 32 (8%) veterinarians. Adverse effects like headache, nausea, skin irritation etc. due to pesticides reported by 3 (0.7%) veterinarians. Allergy due to latex gloves causing itching, skin rashes, skin irritation was reported in 41 (10%) veterinarians. Chemical risk seems to be less pertinent than physical and biological risks but the threats from chemicals and drugs cannot be overlooked and the literature advocated the relevance of these threats (Fritschi, 2008).

Zoonotic hazards

Ringworm and other fungal infection are most common zoonotic infection among veterinarians (Table 3), Epp and Waldner, (2012) also reported similar result in their study among veterinarian of Western Canada. The influenza virus was reported in 78 (19.8%) veterinarians (Table 3) but there is no report of influenza in veterinarian except for 11% seroprevalence of swine influenza virus among veterinary students (Woods et al., 1981). Among bacterial zoonotic infection, tuberculosis was in 2 (0.5%) veterinarians but in a study conducted by Khattak et al. (2016) in Pakistan revealed that 0 veterinarians and 4 abattoir workers were tested positive for M. bovis. In our study there is no report of brucellosis, salmonellosis and staphylococcosis (Table 3) but Mudial et al. (2003); Shome et al. (2017) carried out a survey among veterinary workers in Delhi and Karnataka and reported seropositive cases as high as 27.7% and 7.02% respectively. Study conducted on veterinary students and doctors in the Netherlands revealed a lower MRSA carriage rate (Wulf et al., 2006). The presence of toxoplasmosis 2 (0.5%) was lower than as reported by Rosypal et al. (2015) which was 5.6% in veterinary student. Amoebiasis and scabies in veterinarian were 20 (5%) while other parasitic infection was 37 (9.5%). Our findings are suggestive of a low level of zoonotic diseases being rampant in the sampled population.

Psychological hazards

Work overload, exhaustion due to handling with animals, dealing and satisfying animal’s owner, going to visit patients at their places etc. all these lead to mental stress and loss of working days. Low level of stress was shown by 137 (45%), moderate level by 104 (34%) and high level of stress was reported by 64 (21%) veterinarians. The results of the study are consistent with Fowler et al. (2016) they reported recent feelings of depression in 204 (25%) respondents.

Preventive health measures

Protective equipment used by participants in survey includes gloves by 60%, goggles by 1.1% and apron by 39.8%. However, 36.7% (134) participants did not use any of the protective gear during practices. All participants washed their hands properly after checking patients, similarly Aluko et al. (2016) showed that 100% health care worker followed effective hand washing before and after every clinical practice. Lack of prophylactic vaccination against zoonotic diseases ranked second most important constraint in dealing with life savings from zoonoses (Landge et al., 2016). The study revealed that veterinarians have been vaccinated against diseases like tetanus, rabies and measles. The 135 (89%) participants were vaccinated against Tetanus, 260 (66.3%) against Rabies and 318 (81%) against Measles in their life time. The findings are comparable with the number of zoo veterinarians having vaccinations in Australia against Tetanus 95%, Rabies 70% and Measles 85% (Jeyaretnam, 2003). The study showed that 171 (43.6%), 122 (31.1%), 67 (17.1%), 32 (8.2%) veterinarians followed deworming at 6 month, 1 year, 2 year and more than 2 year intervals respectively. Nigam and Srivastav (2011) analyzed the details of deworming practiced by the Indian wildlife professionals and it was inferred that only 40.7% reported carrying out deworming in the last 6 months, 22.2% in the last 1 year and 12.9% had done it once in the last two years. 24.1% of the respondents did not follow routine deworming.

CONCLUSION

The physical injuries were most prevalent among
The awareness level concerning occupational hazards among the veterinary health professionals was near optimal but the need was felt to implement efforts aimed at addressing deterrence of occupational hazards by developing and executing improved and safe handling practices and safety measures. There are several limitations of this study. The study design did not include serological testing of veterinarians to detect the prevalence of zoonotic diseases. These findings are a preparatory point for further investigation into prevention of workplace hazards and a motivation for targeted injury prevention measures that could be instituted by individuals, practices, and veterinary governing bodies.

REFERENCES

Received: August 13, 2021
Accepted: September 6, 2021